Video: Сызыктуу теңдеменин канча чечими бар?
2024 Автор: Miles Stephen | [email protected]. Акыркы өзгөртүү: 2023-12-15 23:38
системалары сызыктуу теңдемелер болот гана бар 0, 1 же чексиз сан чечимдер . Бул эки сызык эки жолу кесилише албайт. Туура жооп - бул системасы бар бир чечим.
Муну эске алганда, сызыктуу теңдеменин канча чечими бар?
А системасы нын сызыктуу теңдемелер адатта бар жалгыз чечим , бирок кээде болот бар жок чечим (параллель сызыктар) же чексиз чечимдер (ошол эле сызык). Бул макалада бардык үч жагдай каралат. Бир чечим . А системасы нын сызыктуу теңдемелерге ээ бир чечим графиктер бир чекитте кесилишкенде.
Экинчиден, сызыктуу системанын эки чечими болушу мүмкүнбү? Система нын эки сызыктуу теңдемелер болот 't бар так ким чечимдер . Себеби, биз качан эки бар түз сызыктар, алар болот кесилишинин бир чекитинде гана кесилишет, андан ары эмес. Ошентип, кайталоо үчүн, системасы нын эки сызыктуу теңдемелер ээ болот бир гана чечим , алар болот 't бар так эки чечим.
Муну эске алуу менен, сызыктуу теңдеменин чексиз чечимдери бар экенин кайдан билесиз?
Ар кандай 1 өзгөрмө сызыктуу теңдеме өзгөрмө нөлгө чейин жокко чыкпаса, аны түзөт чечим . Эгерде өзгөрмөлөр нөлгө чейин жокко чыгарылат, андан кийин теңдеме болот бар жок чечим же чексиз чечимдер колдонулган константалардын маанилерине жараша теңдеме.
Кайсы теңдеменин чечими жок?
The чечим x = 0 мааниси 0 жооп берерин билдирет теңдеме , ошондуктан бар чечим . “ Чечим жок ” бар экенин билдирет жок маани, ал тургай, 0 эмес, канааттандыра турган теңдеме . Ошондой эле, деп ойлоп ката кетирүүдөн сак болуңуз теңдеме 4 = 5 4 жана 5 деген x үчүн маанилер экенин билдирет чечимдер.
Сунушталууда:
Бир эле сызыктардын канча чечими бар?
Сызыктуу теңдемелердин системаларында 0, 1 же чексиз сандагы чечимдер гана болушу мүмкүн. Бул эки сызык эки жолу кесилише албайт. Туура жооп системанын бир чечими бар
Кайталанган сызыктардын канча чечими бар?
Сызыктуу теңдемелердин системаларында 0, 1 же чексиз сандагы чечимдер гана болушу мүмкүн. Бул эки сызык эки жолу кесилише албайт. Туура жооп системанын бир чечими бар. 2 упайлуу себеттердин саны 3 упайлуу себеттердин саны 1 0 2 1 3 2 4 3
Абсолюттук маанилик теңдеменин чечими жок экенин кантип билесиз?
Сандын абсолюттук мааниси анын нөлдөн алыстыгы. Бул сан ар дайым оң болот, анткени сиз бир нерседен эки фут алыстыкта терс боло албайсыз. Демек, терс санга барабар коюлган ар кандай абсолюттук чоңдук теңдеме, бул сан кандай экендигине карабастан, эч кандай чечим болуп саналбайт
Эки сызыктуу теңдемелердин системасы сиздин ой жүгүртүүңүздү түшүндүргөн чечими жок болушу мүмкүнбү?
Сызыктуу теңдемелердин системаларында 0, 1 же чексиз сандагы чечимдер гана болушу мүмкүн. Бул эки сызык эки жолу кесилише албайт. Туура жооп системанын бир чечими бар. Жалпы упайлардын саны 2 упайлуу себеттердин саны 3 упайлуу себеттердин саны 17 4 (8 упай) 3 (9 упай) 17 1 (2 упай) 5 (15 упай)
Системанын канча чечими бар?
бир чечим Муну эске алганда, теңдемелер системасынын канча чечими бар? Сызыктуу теңдемелер системасы көбүнчө бир чечимге ээ, бирок кээде анын чечими жок (параллель сызыктар) же чексиз чечимдер (бир эле сызык) болушу мүмкүн. Бул макалада бардык үч жагдай каралат.